Photocycle of Photoactive Yellow Protein in Cell-Mimetic Environments: Molecular Volume Changes and Kinetics.
نویسندگان
چکیده
Using various spectroscopic techniques such as UV-visible spectroscopy, circular dichroism spectroscopy, NMR spectroscopy, small-angle X-ray scattering, transient grating, and transient absorption techniques, we investigated how cell-mimetic environments made by crowding influence the photocycle of photoactive yellow protein (PYP) in terms of the molecular volume change and kinetics. Upon addition of molecular crowding agents, the ratio of the diffusion coefficient of the blue-shifted intermediate (pB) to that of the ground species (pG) significantly changes from 0.92 and approaches 1.0. This result indicates that the molecular volume change accompanied by the photocycle of PYP in molecularly crowded environments is much smaller than that which occurs in vitro and that the pB intermediate under crowded environments favors a compact conformation due to the excluded volume effect. The kinetics of the photocycle of PYP in cell-mimetic environments is greatly decelerated by the dehydration, owing to the interaction between the protein and small crowding agents, but is barely affected by the excluded volume effect. The results lead to the inference that the signaling transducer of PYP may not necessarily utilize the conformational change of PYP to sense the signaling state.
منابع مشابه
Dynamical transition and proteinquake in photoactive yellow protein.
Conformational dynamics in protein functioning covers a wide range of time scales from nanosecond fluctuations around a conformation to the large-amplitude conformational changes of milliseconds or longer. We illustrate a picture of cooperative coupling among such motions of different time scales in a model protein, photoactive yellow protein, by proposing a model that can consistently explain ...
متن کاملCrystal structure of a photoactive yellow protein from a sensor histidine kinase: conformational variability and signal transduction.
Photoactive yellow protein (E-PYP) is a blue light photoreceptor, implicated in a negative phototactic response in Ectothiorhodospira halophila, that also serves as a model for the Per-Arnt-Sim superfamily of signaling molecules. Because no biological signaling partner for E-PYP has been identified, it has not been possible to correlate any of its photocycle intermediates with a relevant signal...
متن کاملConversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.
The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized...
متن کاملProtein folding thermodynamics applied to the photocycle of the photoactive yellow protein.
Two complementary aspects of the thermodynamics of the photoactive yellow protein (PYP), a new type of photoreceptor that has been isolated from Ectothiorhodospira halophila, have been investigated. First, the thermal denaturation of PYP at pH 3.4 has been examined by global analysis of the temperature-induced changes in the UV-VIS absorbance spectrum of this chromophoric protein. Subsequently,...
متن کاملA molecular movie at 1.8 A resolution displays the photocycle of photoactive yellow protein, a eubacterial blue-light receptor, from nanoseconds to seconds.
The photocycle of the bacterial blue-light photoreceptor, photoactive yellow protein, was stimulated by illumination of single crystals by a 7 ns laser pulse. The molecular events were recorded at high resolution by time-resolved X-ray Laue diffraction as they evolved in real time, from 1 ns to seconds after the laser pulse. The complex structural changes during the photocycle at ambient temper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 121 21 شماره
صفحات -
تاریخ انتشار 2017